MIKKO 2

PROCESSOR HANDBOOK

MIKKO 2

PROCESSOR HANDBOOK

Ref.: §8.50.97/E0, Vers. B

oy NOKIA AB
ELECTRONICS

00101 HELSINKI 10
Finland

P.O. Box 780

Telephone 90 - 59 131

Telex 12-2062 eleno sf
Telegrams ELECTRONOKIA

The natural in this manual is for informational purposes
and is subject to change without notice.
We assume no responsibility for any errors which may appear

in this book.

First edition March 1976

(PR - AMI - t&)

Printed by MARTINPAINO

N

w

w

N N NN

wowWw W W www

ElEE T N Ve

o 1w N =

CONTENTS

INTRODUCT I ON

THE MINICOMPUTER MIKKO 2

The CPU
The microprogram processor

The arithmetic unit
The main memory
The peripheral interfaces

Interruptions
Interrupt types and their priorities
Stacking and other functions caused by interrupts

The function of the console

The use of the peripherals

MIKKO 2 INSTRUCTION SET B

Memory reference instructions

Instruction format

Addressing modes

Location of the operand or instruction in memory
Address calculation registers

Operand registers

Instructions

Register reference instructions
Instruction length

Instructions
Macro instructions

Instruction set and execution times

Page

10
13

16

19

19
19
19
22
22
22
22

27
27
27

3k
36

1.

INTRODUCTION

This guide is intended to briefly introduce what a user would need to

know about the machine's construction and instruction set.

More detailed information and the operation of peripherals have been ex-
cluded. The intention is to provide a guide for system and application
programmers. Only a few examples are given. An education in electronic
data processing is a prerequisite for anyone to understand MIKKO 2 sole-
ly on the information presented in this book. The book is, for example,

useful as a framework for a programming course.

The second section lists the main features of the CPU and peripheral in-
terfaces. The microprocessor within the CPU and its comprehensive in-
terrupt handling are covered in depth. The third section describes the

machine's microprogrammed basic instruction set.

2.1

THE MINICOMPUTER MIKKO 2

The MIKKO 2 is a minicomputer which uses a word length of 16 bits and
contains a microprogrammed memory. It is designed for the flexible use
of interface units and a medium execution speed. It is equipped with a
versatile interrupt handling system, so its applications range from

process control to real time data processing.

The CPU

The CPU of MIKKO 2 consists of two basic parts: the microprogram pro-
cessor and the arithmetic unit. These are situated on one printed card
and they form one combined unit. In order to achieve a maximal ‘handling

speed the basic parts work parallel serving as one synchronous unit.

The asynchronous bus concept makes it possible to connect units with
different cycle speeds into one entity functioning with one cycle speed.
At the same time it guarantees expandability which is not limited by
the lengths of the data paths.

THE MICROPROGRAM PROCESSOR

The centre of the MIKKO 2 is the processor built around the microprogram
memory. This processor controls clocks and drives the functions of all

the other units. The microprogram processor contains the following:

1. The Microprogram Memory: a fast semiconductor memory (access time
80 ns) the size of which in the basic version is 768 x 24 bits.
It contains the microprogram procedures needed by the machine in-

struction set and for interrupt handling.

2. Microprogram Logic: a logic unit containing two address registers,
an instruction register, a status register, a microprogram regis-

ter, an address multiplexer and their control units.

3. Interrupt Control Logic: a unit which controls the microprogram

logic handling interrupt request of different levels.

b, Test Logic: a logic which tests the internal status of the CPU.

5. Control Logic: contains a combination logic and a register, which

controls the control bus and the arithmetic unit.

The basic instruction set (see chapter 3) is microprogrammed as a sub-

routine for the CPU, which can be divided according to its functions

into the following groups:

o instruction search routine
- address counting routine
- routines belonging to a specific instruction

- interruption routines

Operation codes of machine instructions and interrupt requests given to
the microprocessor for processing are subroutine calls. While process-
ing subroutines the microprocessor produces data which controls the
other units. A part of its function is to generate new tasks for itself
so that functioning continues uninterruptedly. Figure 1 shows the inter-

action between the microprocessor and the parts of the system surround-

ing it.
STATUS DATA I
rTTT T T T f -
l | ALU
b
e 1
\ A |
o |
_ o |
TNSTRUCTIONS _ M MICRO- z 'l 3
n = o
PROCESSO = > — <:_—__>§
g 3
INSTRUCT I ONS 2
A [
= |
o
o |
<_
1/0
N e K
FACES

Figure 1

1.

THE ARITHMETIC UNIT

The arithmetic unit contains a 16 bit binary parallel arithmetic unit,
8 working registers, the data multiplexers and the interface logic of

the data multiplexers and the interface logic of the databus.

The arithmetic unit is a fast adder which functions on the ''Carry Look

ahead' principle and performs the following basic functions:

A+ B addition

A-B subtraction

A+ B and-function

A @B exclusive or -function

The working registers are multiport registers and are interconnected
like the arithmetic unit, by an internal ALU bus and by data multiplex-

ers. The arithmetic has been designed for easy byte handling.

The eight working registers of the machine are identical but the micro-

programmed instruction set gives each of them a specific use:

- A, B the working registers for arithmetic and logic calcula-
tion

- I, K index registers for address calculation

- PR the program counter

- LR the address calculation register

- APU a scratchpad register

- DMR a register for microprogrammed memory channel functions

2.2

2.3

THE MAIN MEMORY

The standard memory of the machine is a semiconductor memory (MOS) the
complete size of which is 64K x 8 bits. The memory consists of independ-
ent 16K x 8 bit modules of which there may be 4. The memory is so organ-
ized that the CPU can transfer data into the memory both in words and in
bytes (2 bytes = 1 word). The basic component of the memory is a 1 bit

dynamic random access memory RAM.
The execution times of the memory are the following:

read cycle time 500 ms
write cycle time 700 ns

read access time approx. 250 ns

The speeds are the same for byte or word transfer. The memory is pro-
tected from power-outs by a standby power supply unit connected to the

main one.

THE PERIPHERAL INTERFACES

The following peripheral interfaces are available:

1. The synchronous line controller SLC-M2

SLC-M2 is a high speed line controller for communication via a
synchronous data channel. The wunit makes MIKKO 2 suitable for

terminal control and data concentration applications.

SLC-M2 is designed to be available in applicaticns involving dif-

ferent line procedures, i.e.

= procedures based on control characters (BSC, ECMA, etc)
- HDLC
- SDLC

- DDCMP

SLC-M2 is based on a microprocessor and incorporates following

features:

- transmission (direct memory access) speed up to | M Baud,

- double buffered receive and transmission with automatic buffer

switching,
- full- or half-duplex operation,
- data sét control,
= auto answering capability,
- control character recognition and sequence control,
- automatic address recognition capability,

- automatic BCC (Block Check Character) generation and error de-

tection,
- selectable BCC generation,

- transparent mode with automatic insertion and stripping of DLE

characters,

- test loops through SLC~M2 and modem

The universal line interface ULC-M2

The ULC-M2 is a wuniversal line interface for full- or half-duplex
communication between a variety of serial communication devices and
the MIKKO 2 computer.

With the ULC-M2 interface a MIKKO 2 computer can communicate with
a local terminal, a remote terminal via data sets and private line
or switched telephone facilities or with another local or remote
MIKKO 2. The data transfer rate is in asynchronous mode from 110
bps up to 9600 bps and up to 56.000 bps in synchronous mode.
Several ULC-M2's can be handled by MIKKO 2, each interface con-

sisting of 8 channels.

For each channel in the ULC-M2 there is a status and configuration
register. The receiver and transmitter data buffer registers are

shared by the eight channels through an internal multiplex method.

Cassette Tape Recorder Interface

An interface which controls two DC-300 type digital cassette tape
recorders and uses z microprogrammed memory channel. The specifi-

cations are according to ANS! proposals:

- bit transfer rate 24.000 bit/s or 48.000 bit/s
- phase modulation

N serial recording

. automatic CRC-check

- block length is specifiable in the program

o automatic load=-point search

N automatic writing of the interrecord gaps

The Teletype Console Interface

A normal half-duplex current loop interface for the teletype ASR 33
of 110 bauds.

The Card Reader Interface (M-600L)

A card reader the speed of which is 600 cards/min.

The Alphanumeric Keyboard

The Function Keyboard and the Semiconductor Display

Interface

2.4

INTERRUPTIONS

The central processor recognizes 4 different types of interrupts. They

are in order of priority as follows:

- power fail
N console interrupts
- microprogrammed memory channel interrupts

- device interrupts

INTERRUPT TYPES AND THEIR PRIORITIES

Power Fail

If the mains power fails, a power fail interrupt is generated. When this
happens the registers are automatically stored in a stack and at the
same time the main memory is protected by switching on the reserve power

pack. When the mains power returns the registers are restored.

Console Interrupts

The storing of words into memory, examination of the contents of the
memory and the registers and the starting and interruption of programs

may be berformed using the console.

Memory Channel Interrupts

The microprogrammed memory channel interfaces generate interrupts by
which the CPU transfers data between the memory and the interface. It
also updates the address and character counters used when transferring

data without a program interrupt.

POWER MONITOR LEVEL

§ * FETCH
POWER POWER NEXT
OFF ON INSTRUCT ION

v 4

P17 ; ‘ ; ‘ ‘ &
: [ﬁLAD l [DEPﬁ1 l, EXHA]]7 HLT J] RUN l ! AUTO ?
! I l l ! o
| 1
MICRO-PROGRAMMED MEMORY CHANNEL LEVEL :
BBM? , |
E READ WRITE coMp i INCR I :
S Sl i .

HARDWARE INTERRUPT LEVEL

L—"__—‘_—___““—_}_"_'{°'-'7
|NSTR- IHQTR- CODE HALT
Y I ElRE [wni |
. I

Figure 2

2.4.2

Device Interrupts

The microprograms serving the device interrupts are able to identify
256 different interrupt requests. The identification is done through
the interrupt number generated by the interrupting unit. When an inter-
rupt occurs the registers are stacked, after which the interrupt number
is transferred into the working register A. The return from an inter-
rupt is performed by using the instruction RFI (see instruction set)

which restores the registers.

The priority levels and the branching to these levels are described in

Figure 2, which represents the functioning of the microprogram processor.

If the microprogram processor is idle, it performs the loop marked by a
broken line in the figure, which it can leave only through an interrupt.
This Interrupt can be among others the console RUN interrupt, the re-
sult of which on the next round is a branch to the console interrupt
level. From there on it follows the RUN routine, which is followed by
the microprocessor ending in a Jloop where it fetches the following
machine instruction by itself. |If during this round no interrupt re-
quest has been received, we come to machine instruction level where
branching occurs according to the operation code of the instruction.
It is to be noted from the figure that once in the interrupt inhibit
state, only device interrupt requesfs are prevented from arriving at
the microprogram processor. |If such requests do arrive, the micropro-

gram processor is ready to handle them.

STACKING AND OTHER FUNCTIONS CAUSED BY INTERRUPTS

Some words in the main memory have been dedicated to the handling of

interrupt functions:

stack address
address of the interrupt handler
address of the power fai! interrupt handier

address of the line controller device table

1
L oN N W

address of the cassette controller device

There are also some words used by the microprograms (character counters,
pointers) in the line and cassette tables. The rest of the memory can

be used freely.

Upon the arrival of an interrupt necessitating the stacking of the re-
gisters (power control device interrupts and software interrupts, i.e.
switching from one module to another, see instruction set, CALL) the

following procedures are followed:

1. The registers A, B, |, K, the carry bit and the PR are taken to
memory locations which are located just after the location given

by the stack pointer (stack pointer + 2, stack pointer + 4, etc.).

2. The stack pointer is increased by 12, making it point at the sur-

face element.

3= If a device interrupt occurs, the interrupt code is loaded into

register A.

k. The interrupt controller is set to the interrupt-inhibit state.

Thus no further interrupts will arrive.

5. The contents of memory word 4 are loaded into the PR-register if
a power control interrupt occurs, otherwise the contents of the

memory word 2. Execution then continues from this address.

The return from an interrupt is achieved by using the machine instruc-
tion RFI (except power control interrupt), which results in the follow-

ing:

1. Values from the location indicated by the stack pointer are loaded
into registers PR, CARRY, K, |, B and A.

2. The interrupt inhibit state is removed.

3. The execution of instructions continues from the location indicated
by the PR.

Example: The state of the memory being (in hexadecimal):

Address Contents
— @ 572A stack pointer
2 oLok address of the interrupt handler

Lok 1703 beginning of the interrupt handler
Lp6 $502
1232 2p50 machine instruction last executed
1234 Lg6p machine instruction to be executed

“=»572A 2244 surface element of stack

572C 3536

Let the contents of the registers be the following:

A = 5792, B = 2249, | = 5797, K = 0000, CARRY = 1 and PR naturally 1234.
If now a device interrupt having the code 81 arrives, the situation is

the following upon arrival at the interrupt handler:

— 0 5736
[: 2 phph
Lgh 1793
Lg6 @502
1232 2959
1234 Lpep
572A 2244
572C 5792 A
572E 2249 B
5738 5797 | register values stored
5732 0000 K into the stack
5734 0001 C
PR

> 5736 1234
5738 .

Niko Nieminen
Kirjoituskone
72

Niko Nieminen
Kirjoituskone
72

2.4.3

The contents of the registers are now:

A = 0081, PR = piph, the rest remaining as they were. When returning
from the corresponding interrupt for example at the end of the interrupt

handler the old values are loaded from the stack to the registers:

P: = 1234, CARRY: = 1, K: = 0000, |I: = 5797, B: = 2249 and A: = 5792.
The stack pointer (memory location §) is updated correspondingly to be
572A. Thus the value of register P becomes 1234 and the execution of
the interrupted program goes on from there. Both stacking and unstacking
are performed during one ‘''cycle" of the microprocessor. Thus they are

not interrupted by an interrupt request of higher priority.

THE FUNCTION OF THE CONSOLE

The console is a peripheral connected to the CPU with which one may
examine the contents of the memory and the registers, write words into
the memory and start and interrupt programs. The visible part of the
console consists of one signal light, two displays of 4 decades, a

choice of display and the input control keyboard (see Figure 3).

HALT MEMORY ADDRESS REGISTER CONTENTS <85
RUN LAD A B C D E F
AUTO | |CONT DEP 4 5 6 7 8 9

R¥]
HALT EXM 0 1] 2

Figure 3

14

Displays

The HALT display shows whether the microprogram processor is executing

a HALT loop or handling an interrupt (see microprogram processor).

The MEMORY ADDRESS display shows the contents of the PR during a HALT

loop; otherwise it shows the contents of the LR.

The REGISTER CONTENTS display shows the contents of the element given by

the selector.

Selector Display

The element to be displayed by the REGISTER CONTENTS can be chosen by

the display selector in the following way:

g contents of register A

1 contents of register B

contents of register

contents of register K

contents of register PR

contents or register LR (not in use during the HALT loop)

contents of register APU

~N oYU EWwWN

wise contents of register DMR

8 locks the console, i.e. inhibition of interrupt requests from the
console

The Input Keyboard

Data is entered into a buffer of 4 hexadecimal numbers using the key-
board. The keys represent one hexadecimal number each, with the exception

of the CL key which clears the buffer.

contents of the memory word given by the PR during a Halt loop, other-

The Control Keys

The use of a control key generates an interrupt request at console

level to the microprogram processor. The functions of these keys are:

LAD

DEP

EXM

RUN

CONT

HALT

REST

Load Address; the contents of the input buffer are loaded in-
to the PR and the microprogram processor goes into a HALT

loop.

Deposit; the contents of the input buffer become the contents
of the memory word given by the PR and the machine remains
in a HALT loop.

Examine Next; the contents of the PR are increased by two,

the machine remains in a HALT loop.
execution is started from the address in the PR.

Continue; execution of the machine instruction pointed to the
PR, after which the machine remains in a HALT loop (the con-

tents of the PR are incremented appropriately).

The microprogram processor goes into a HALT loop and the

contents of the PR are decreased by two.

Restart, which causes the microprogram processor to move a
fixed autostart memory from the console to the beginning of
the main memory. After this the microprogram processor starts

the execution of the relocated program from address § on.

If the keys CL and REST are used simultaneously the main

memory is cleared.

2.5

THE USE OF THE PERIPHERALS

There is no special instruction in the instructions set for the use of
the peripherals. The communication between the device interfaces and
the program is achieved through a so-called device page. The device
page is separate from the main memory and it can be used by both the
device interfaces and the software by using so called device page
sharing (see instruction set). The device page contains 256 bytes used
for status and 1/0 data for the devices. |In addition to this there are
256 one bit device flags and device masks for the control of the devices.
The device flags indicate, depending on the device, the existence of
interrupt requests or the status of the devices. An arriving interrupt
is acknowledged by for example clearing the flag, depending on the de-
vice in question. By setting a mask the sending of a corresponding
interrupt request to the central wunit is inhibited. Correspondingly

the clearing of the.mask permits the sending of interrupt requests.

The peripheral interfaces can be divided into three classes depending

on their manner of operation:

- interfaces using cycle stealing memory channel transfer (DMA)
- interfaces using microprogrammed memory channel transfer

- interfaces using character transfer
The use of DMA devices:

The devices using microprogrammed memory channel transfer function in

the following manner when transferring data:

1. The user sets values showing to or from which memory location the

data is transferred into certain registers on the device page.

2. The user transfers his instruction, for example read, write, etc.

into a certain position in the device page.

3. From here the transfer takes place directly from memory/into memory
so that the interface takes the internal device bus-line for its
own use and controls the whole transfer between memory and inter-

face. The transfer may take place in bytes or in words according to

17

the interface requirements. Every device which can reserve the
bus-line has a certain priority. The device which has the higher
priority can take bus control from that which has the lower pri-

ority, but only after the other has finished its transfer sequence.

When the function has been completed the interface sends a device

interrupt (assuming that the mask in question has been cleared).

The devices using microprogrammed memory channel transfer function in

the following manner when transferring data:

The user sets values showing from which buffer/to which buffer the

‘data is transferred into certain device tables also used by the

microprogram. He also gives the amount of data to be transferred

etc.

The user transfers his instruction, for example read, write, etc.

into a certain position in the device page.

From here the transfer takes place directly from memory/into
memory so that after each transfer of a character the interface
sends a microprogrammed interrupt at memory channel level. When
this interrupt 1is sent the micro-software updates the necessary
counters and pointers and checks if the function wanted has been

completed.

When the function has been completed or if an execution error has
occured the interface sends a device interrupt (assuming that the

mask in question has been cleared).

The user acknowledges the interrupt, reads the cause of the inter-
rupt from the interrupt code of the status data of the device and
executes the procedures necessary for continuing processing. If
serving the interrupt takes so much time that the machine cannot
be held in the interrupt inhibit state for the whole time, the
user should set the corresponding interrupt mask for the dura-

tion of the interrupt condition.

18

Character oriented device operation is very much less complicated. The

input to the machine is executed in the following way:

1. when sending a character, the device sends an interrupt request (if
this has not been inhibited by an interrupt inhibit state or by a
mask). Now the character can be read from a certain location in the

device page.

2. The user transfers the character from the device page into a loca-
tion that he has chosen and acknowledges the interrupt. If no
further characters are wanted from the device the corresponding

interrupt mask is set. Otherwise the next character is awaited.
The output to the device is as follows:

1. The user transfers the character to be output into a certain loca-

tion in the device page.

2. After receiving the character, the device sends an interrupt to

signal its readiness to receive the next character.

In general the devices also produce a signal of unsuccessful transfers
and other disturbances by interrupts. The necessary procedures must in

these cases be executed by the user.

3.1

MIKKO 2 INSTRUCTION SET B

The B instruction set has been realized using microprogramming so it is
easily adaptable to the user's needs. The instruction set is byte orien-

ted.

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions perform functions between the registers
and memory words or bytes. The addressable memory field depends on the
memory size in use; the largest possible memory stretches from ﬂ—FFFFls.
As already mentioned in the previous chapter, memory addresses @...9

are dedicated to special uses.

INSTRUCT1ON FORMAT

The length of a memory reference instruction is 2 bytes (16 bits). The

bits @...4 of the instruction contain the operation code, 5...7 the

addressing mode and the rest (8...15) contain the operand.

MSB LSB
operation addressing operand
code mode

0 L 7 15

MSB = most sigificant byte

LSB = least significant byte

ADDRESS ING MODES

When studying the memory addressing instructions it is to be noted that
a MIKKO 2's page is dynamic. (A page is the area which can be referred

without using index registers or indirect addresses.)

20

The address given in the lower byte of the machine instruction is re-
lative to the value of the address counter. The addressable area is

thus 128 bytes either side of the instruction being executed.

This feature frees the programmer from the difficulties caused by fixed
pages. On the other hand the programmer must remember the interpretation
of the addresses when wusing, for example, combinations of indexed

addressing and symbolic references.

The addressing modes of the memory reference instructions (codes @@...BF)

are as follows:

[} Direct Relative Addressing
The effective address is found by adding the effective address (d)
to the PR register's contents.

E.A. = PR + d (where -12810 <d f_12710)

The only exception is with the JMP instruction when:

E.A. = PR + d when the instruction code is @3
E.A. = PR - d when the instruction code is #7 (where 0 < d 5_25510)
1 Address indexed from |

The effective address is found by adding the instruction address to

the contents of the | register.
E.A. = | +d (where —12810 <d 5_12710)
2 Address indexed from K
The effective address is found by adding the instruction address to

the contents of the K register.

E.A. = K+ d (where -12810 <d 5_127]0)

21

The addressing of devices
The last byte of the instruction gives the address of the device

question. This is the only way of addressing a device.

E.A. = d (where 0 <d :_255]0)

Indirect address
The effective address is found in the memory address which is found
by adding the instruction address to the contents of the PR re-

gister.

E.A. = [PR+d]l (where -128,, < d < 127,,)

Indirect address from |
The effective address is found by adding the | register contents to
the contents of the memory address found by adding PR to the in-

struction address (d).

E.A. = [PR+d] + | (where —12810 <d 5_12710)

An exception occurs with a JMP instruction (@5).

E.A. = [PR+d + 21]

Indirect address from K
The effective address is found by adding together the contents of

the K register and the contents of memory address PR + d
E.A. = [PR + d] + K (where —128]0 <d< 12710)

An exception occurs on JMP instruction @6, where:

E.A. = [PR +d + 2K]

Immediate addressing

The instruction's last byte is interpreted as an operand.

E.A. = PR+ 1

.1.3

b

22

LOCATION OF THE OPERAND OR INSTRUCTION IN MEMORY

If the instruction or operand is one word long (2 bytes), the effective
address gives the location of the highest byte. The low byte goes into
next address above the effective address. When the effective address is
calculated, the value of the Program Counter PR gives the location of
the highest byte.

ADDRESS CALCULATION REGISTERS

The address calculation and fetch routines (microprograms) use the LR
and APU registers, the effective address being always loaded into the
LR register. It is possible to use the control panel to check the last
memory reference instruction's effective address by examining the LR

register.

After writing to memory, the bytes from the memory loading instruction
are sought from the effective memory addresses' contents and loaded in-
to the APU register. In the memory storage command the bytes are written
into the effective address. Because memory read and write is byte-
oriented, after the execution of the instruction the LR register con-

tains the address of the last byte.

OPERAND REGISTERS

Registers A, B, I, K and APU are also used in arithmetic and logic oper-
ations. The operand located in the memory in byte form, is shifted in
this form into the APU register. The arithmetic operation proper is
executed as a micro-operation between the working register and APU re-

gister.

INSTRUCT I ONS

The memory reference instruction's first five bits comprise the instruc-
tion while the last three give the mode of addressing. In the following
section the operational code is marked with an x if the fifth bit s

zero and y if one.

23

For example instruction [INCB, direct addressing from register I, is
coded 11; instruction code DECB, indirect addressing from register K,
is 1E. For some memory reference codes all addressing modes do not work.
This would happen because these codes are microprogrammed to another

instruction.

Px JMP JUMP
The effective address is loaded into PR. Note: the
addressing modes for this instruction have special ex-

ceptions (@@ is an invalid instruction code).

Py JSR JUMP TO SUBROUTINE
The PR register's contents are loaded into register K
and the stack. PR is loaded with the effective address.
The stack pointer is raised by two.

*
Note: @B PUSA and @F RFS

1x INCB [INCREMENT BYTE
The byte stored in the effective address is increased by
one. The registers remain unchanged.
Note: 13 PUSB and 17 SPZA*

1y DECB DECREMENT BYTE & SKIP 2 IF POSITIVE
The byte stored in the effective address is decreased by
one. The registers stay unchanged. If the result is not
negative, the program skips two bytes.
Note: 1B PUSI AND 1F SPzB*

2x LWA LOAD WORD TO A
The word stored in the effective address is loaded into
accumulator A, whose previous contents are destroyed.
Note: 23 PUSK*

2y LwB LOAD WORD TO B
The word stored in the effective address is loaded into
accumulator B, whose previous contents are destroyed.

Note: 2B POPA*

*
See register reference instructions.

24

3x

3y

Lx

5x

LWI

LWK

LBA

LBB

SWA

LOAD WORD TO |
The word stored in the effective address is loaded into
index register |, whose previous contents are destroyed.
Note: 33 POPB™

LOAD WORD TO K
The word stored in the effective address is loaded into

index register K, whose previous contents are destroyed.
*
Note 3B POPI

LWA, LWB, LWI or LWK together with the immediate operand
gives a word whose high byte is zero, while the low byte

takes the value of the next byte of operational code

MSB LSB

PPPOBP 0P P|operand part

The immediate operand

LOAD BYTE TO A
The byte stored in the effective address is loaded in as
the low byte of accumulator A. The high byte is set to
zero.

%
Note: 47 NoOP

LOAD BYTE TO B
The byte stored in the effective address is loaded as in
the low byte of accumulator B. The high byte is set to
zero.

%
Note: 4F POPK

STORE WORD FROM A

The contents of accumulator A are written into the effec-
tive address. The acculator's contents remain unchanged.
Note: 53 ADAB and 57 ADBA®

*
See register reference instructions.

5y

6x

7x

7y

8x

8y

SWB

SBA

SBB

ADDA

ADDB

SUBA

SUBB

25

STORE WORD FROM B
The word in accumulator B is written into the effective
address. The accumulator's contents remain unchanged.

Note: 5B and 5F are invalid instruction codes.

STORE BYTE FROM A

The low byte in accumulator A is written into the effec-
tive address. The accumulator's contents remain un-
changed.

Note: 67 BISA*

STORE BYTE FROM B

The lTow byte in accumulator B is written into the effec-
tive address. The accumulator's contents remain un-
changed.

Note: 6F BIsB™

ADD WORD TO A

The word in the effective address is added into the
contents of accumulator A. An immediate operand is taken
as positive (0-25510). Overflow sets the Carry-flip-flop.
Note: 73 BICA®

ADD WORD TO B

The word in the effective address is added into the
contents of accumulator B. An immediate operand is
taken as positive(O-ZiS]O). Overflow sets the Carry-flip-
flop. Note 7B BICB

SUBTRACT WORD FROM A

The word in the effective address is subtracted from
the contents of accumulator A. An immediate operand is
regarded as positive. Overflow sets the Carry-flip-flop.
Note: 83 CLRM*

SUBTRACT WORD FROM B

The word in the effective address is subtracted from
the contents of accumulator B. An immediate operand is
regarded as positive. Overflow sets the Carry-flip~flop.

Note: 8B invalid instruction code.

* . . .
See register reference instructions.

26

9x

9y

Bx

By

ANDA

ANDB

XORA

CMP1

CMPK

AND A TO MEMORY WORD

An '"and'" function between the word in the effective add-
ress and the contents of accumulator A. The immediate
operand's highest byte is set to FF.

Note: 93 SETM®

AND B TO MEMORY WORD

An '"and'" function between the word in the effective add-
ress and accumulator B. An immediate operand is treated
the same as before.

Note: 9B invalid instruction code.

EXCLUSIVE OR A & MEMORY WORD

An ''‘exclusive or' function between the word in the effec-
tive address and accumulator A. The immediate operand's
high byte is set to zero.

Note: A3, A8, A9, AA, AB, AC, AD, AE and AF are invalid

instructions codes.

COMPARE TO 1, SKIP 2 IF | GREATER, 4 IF EQUAL
Index register | and the effective address contents are

compared and the result controls a skip as follows:

1 <M No skip
1> M Skip 2 bytes
| =M Skip 4 bytes

The register contents are regarded as a 16 bit positive
number. The contents of memory and register remain un-
changed. An immediate operand is regarded as positive
(0'25510).

Note: B3 invalid instruction code.

COMPARE TO K, SKIP 2 IF K GREATER, L4 IF EQUAL
The same as before, but with index register K.

Note BB invalid instruction code.

* . : .
See register reference instructions.

3.2

3.2.1

3.2.2

REGISTER REFERENCE INSTRUCTIONS

INSTRUCTION LENGTH

27

The register reference instruction may be one or two bytes long. In the

following explanation, the letter after the instruction code gives
length: a for a byte and b for a word.
INSTRUCTIONS

@#Ba PUSA PUSH A TO STACK

Store register A onto systemstack.

@Fa RFS RETURN FROM SUBROUTINE

The return address is loaded from the stack into PR.

stack pointer drops two.

13a PUSB PUSH B TO STACK

Store register B onto systemstack.

17a SPZA SKIP ON ZERO A

A jump of two bytes if A is zero.

18a PUSI PUSH | TO STACK

Store register | onto systemstack.

1Fa SPZB SKIP ON ZERO B

A jump of two bytes if B is zero.

23a PUSK PUSH K TO STACK

Store register K onto systemstack.

2Ba POPA POP A FROM STACK

Load register A from systemstack.

33a POPB POP B FROM STACK

Load register B from systemstack.

the

The

28

3Ba

L47a

LFa

53a

57a

67b

6Fb

7Bb

83

POPI

POPK

ADAB

ADBA

BICA

31SA

BiSB

CLRM

SETM

POP | FROM STACK

Load register | from stack.

NO OPERATION

The contents of register PR are increased by one.

POP K FROM STACK

Load register K from stack.

ADD A TO B
Add contents of registers A and B together and load the

result into B.

ADD B TO A
Add contents of registers A and B together and load the

result into A.

BIT CLEAR A
Clear one bit in A. The bit index is defined in the follow=

ing byte.

BIT CLEAR B
Clear one bit in B. The bit index is defined in the follow-

ing byte.

BIT SET A
Set one bit in A. The bit index is defined in the follow-
inrg byte.

BIT SET B
Set one bit in B. The bit index is defined in the follow=-

ing byte.

CLEAR MASK

Enable interrupts from device specified in register A.

SET MASK

Inhibit interrupts from device specified in register A.

Cob

Clb

C2b

C3b

Cha

cé..

CBb

CCb

Cbb

ADDI

ADDK

SUBI

SUBK

CTOA

CTo8B

.CA

TSTF

CLRF

STF

29

ADD IMMEDIATE OPERAND TO |
The immediate operand, understood as positive (0'25510),

is added into index register I.

ADD IMMEDIATE OPERAND TO K

Same as before, but for index register K.

SUBTRACT IMMEDIATE OPERAND FROM |
The immediate operand, again understood as positive
(0'25510), is subtracted from the contents of index reg-

ister |.

SUBTRACK IMMEDIATE OPERAND FROM K

Same as before, but for register K.

LOAD CARRY TO A
Load A with a zero or a one depending on the state of
the carry. The accumulator's original contents are de-

stroyed.

LOAD CARRY TO B
Load B with a zero or a one depending on the state of
the carry. The accumulator's original contents are de-

stroyed.
See Macroinstructions.

TESTFLAG AND SKIP 2 IF ON

This tests the peripheral device flag, found at the
given address. If the f[lag has been set, the program
skips two bytes.

CLEAR FLAG
Resets the addressed FLAG flip-flop to zero

SET FLAG
Sets the addressed FLAG flip-flop to one.

Note: CE and CF are invalid instruction codes.

30

DZa

Dla

D2a

D3a

D5a

Dba

D8a

DSa

DAz

DBa

DCa

Dba

CLRC

SETC

ATO!

ATOK

CLRA

CLRE

BTOI

BTOK

iTOA

1708

CLRI

KT0A

KTO0B

CLEAR CARRY

Resets the carry te zero.

SET CARRY

Sets the carry to one.

LOAD A TO |

Loads the contents of accumulator A into register |.

LOAD A TO K

Loads the contents of accumulator A into register K.

CLEAR A

Resets accumulator A to zero.

CLEAR B

Resets accumulator B to zero.

LOAD B TO I

Loads the contents of accumulator B into register |.

LOAD B TO K
Loads the contents of accumulator B into register K.

LOAD | TO A

Loads the contents of register | into accumulator A.
LOAD | TO B

Loads the contents of register I into accumulator B.
SLEAR I

Resets register | to zero.

CLEAR K

Resets register K to zero.

LCAD K TO A
Load the contents of register K into accumulator A.

LOAD K TO B
Lcad the contents of register K into accumulator B.

DEb TSTA

DEb

DFb

Efa

Ela

E2a

TSTC

TSTB

RLA

RLB

RL3A

31

JESTA

Examines the contents of carry and/or accumulator A and
skips two bytes if the test is positive. The test itself
is specified by the .ext byte.

12 15
L] e en] n
c d e
c. Bit test no/yes
d. Bit false/true test
e. index of bit to be tested

TEST CARRY
Examines the contents of carry bit and skips two bytes
if the test is positive. The test itself is specified by

the next byte.

)
N
0

a. Carry test no/yes

b. Carry false/true test

TEST B

As above but for the B accumulator.

ROTATE A ONCE TO LEFT
A is rotated one bit to the left.

. \
[RLA v
—_—
A |1001100000101110 l0o11000001011101 |
\. 7 \ _/

ROTATE B ONCE TQ LEFT
B is rotated one bit to the left.

BOTATE A THREE TIMES TO LEFT
A is rotated three times to left.

32

£3a

Eha

E5a

Eba

£8a

E9a

EAa

EBa

RL3B

RRA

RR3A

SRA

SRB

SR3A

SR3B

SWPA

ROTATE B THREE TIMES TO LEFT

B is rotated three times to left.

ROTATE A ONCE TO RIGHT

A is rotated once to the right.

A [1100111010110000 | —RRA 1 0110011101011000]
\ / | U
L = A

ROTATE B ONCE TO RIGHT

B is rotated once to the right.

ROTATE A THREE TIMES TO RIGHT

A is rotated thres places right.

ROTATE B THREE TIMES TO RIGHT
B is rotated three places right.

SHIFT A ONCE TO RIGHT
A is arithmetically shifted once right.

I
A] 1000001100001111 |

v
> | 1100000110000111 |

- —

I A

SRA

SHIFT B ONCE TG RIGHT
B is arithmetically shifted once right.

SHIFT A THREE TIMES TO RIGHT
A is arithmetically shifted three places right.

SHIFT B THREE TIMES TO RIGHT
B is arithmetically shifted three places right.

SWAP BYTES IN A
The positions of low and high bytes -in accumulator A are

switched.
A [1011000111100011 | —*PAL | 1110001110110001 |
| A

EDa

EEa

F@a

Fla

F2a

F3a

FCa

FDa

SWPB

CMPA

COMA

CoMB

NEGA

NEGB

10N

10F

33

SWAP BYTES IN B

The positions of low and high bytes in accumulator B are
switched.

COMPARE A TO B, SKIP 2 IF A GREATER, 4 IF EQUAL
A and B are compared and the result influences the skip

as follows:

A< B No skip
A>B Two bytes are skipped
=B Four bytes are skipped

Numbers are regarded as containing 16 bits in the 2's

complement system.
Note: EF invalid instruction code.

ONE'S COMPLEMENT OF A

The contents of A are inverted.

ONE'S COMPLEMENT OF B

The contents of B are inverted.

TWO'S COMPLEMENT OF A
A is negated and overflow sets the CARRY.

TWO'S COMPLEMENT OF B
B is negated and overflow sets the CARRY.

Note: FL, F5, F6, F7, F8, F9, FA and FB are invalid

instruction codes.

INTERRUPT ON

The processor is opened to interrupt requests.

INTERRUPT OFF

Interrupt requests are ignored.

34

FEa HALT HALT, INTERRUPT OFF

The processor stops and ignores interrupts.

FFa WAIT HALT, INTERRUPT ON

The processor stops and awaits interrupts.

MACRO INSTRUCTIONS

C6A MULT MULTIPLY A AND B
Immediately before the instruction becomes effective the
multiplier is in accumulator A and the multiplicand in
accumulator B. The result is a 32 bit double word, which
is generated on execution of the instruction. It is lo-

cated in the accumulators as follows:

MSB LSB MSB LSB
LP 15 16 31
Accumulator A Accumulator B

Multiplier and multiplicand are always taken as positive

numbers not longer than 16 bits.

C7A DIV DIVIDE A WITH B
Immediately before instruction execution the dividend is
located in the accumulator A, while the divisor is in
accumulator B. The result is 16 bits split over two loca-
tions. The number before the point goes into accumulator
A while the fractional part goes into accumulator B. The
mantissa on the remainder goes into the | register and
may be useful if further accuracy is needed. In this
case the remainder is moved into the accumulator A and
another division occurs, giving a continuation of the

previous result of more binary places.

Because the division also divides the divisor's leading
zeroes, the accuracy of the result may in the worst case
be only one significant ditit (when the dividend is one).
Divisor and dividend are understood to be positive

integers of length not greater than 15 bits.

C8a

C9a

CAa

MOVE

CALL

RF1

3%

MOVE

The move instruction relocates a block of memory from an
area whose first address is in the K register to an area
whose first address is in the | register. The length of
the block is found in the accumulator A. After execution
K and | contain the sending and receiving addresses one
after the last address in the areas affected and A is

zeroed.

JUMP TO INTERRUPT ROUTINE

The software interrupt procedure. The instruction shifts
the contents of A, B, |, K, CARRY and PR into the inter-
rupt stack. The program jumps to the addfess given by
address number 2 and continues with the word stored

there. The machine is switched into its IOF state.

The interrupt stack pointer is stored in address number
@ and its value after execution gives the location of
the last register's contents (PR). The pointer value may
only be even so the CARRY-bit gets a word of space. The
accumulator A is reset to zero, while the remainder stay

unchanged.

RETURN FROM INTERRUPT

The opposite of the previous instruction. The contents of
registers A, B, |, K, CARRY and PR are replaced from the
interrupt stack, whose pointer is appropriately relocated.
The machine goes back into ION state and the program con-

tinues from the location in the PR register.

36

INSTRUCTION SET AND EXECUTION TIMES

The following passage gives the basic instruction set of the machine.
The performance times of each instruction (in microseconds) are given
for when the processor is working at the speed given in chapter 2 (read ,
write and registerphase). The addressing modes of the memory reference
instructions and the symbols x and y after the instruction symbol have
the same meaning as before. The three numbers after the memory reference
instruction give the execution time of the instruction when addressed
directly, indirectly and using an immediate operand. The use of indexing

does not influence the times given.

MEMORY REFERENCE INSTRUCTIONS
Direct Indirect Immediate

@x JMP JUMP 3,1 us 7,0 us -
gy JMs JUMP TO SUBR

OF RFS RETURN FROM SUBR 17,3 17,9 -
1x INCB op + 1 7,2 7,9 -
ly DECB op - 1, SKIP IF POS. 8,2 8,9 -
2x LWA A « op 6,7 8,1 2,8
2y LwB B « op 6,7 8,1 2,8
3x LWl | <« op 6,7 8,1 2,8
3y LWK K « op 6,7 8,1 2,8
L4x LBA A [8 -15] « op 6,6 7,3 -
Ly LBB B [8 - 15] « op 6,6 7,3 -
5x SWA A > op 9,1 9,7 -
Sy SWB B > op 9,1 9,7 -
6x SBA A [8 - 15] 5 op 7,2 7,9 =
6y SBB B [8-15] » op 7,2 7,9 -
7x ADDA A<« A + op 7,1 8,5 3,1
7y ADDB B <+ B + op 7,1 8,5 3,1
8x SUBA A<« A - op 7,1 8,5 3,3
8y suBB B« B - op 7,1 8,5 3,3
9x ANDA A< A& op 6,7 8,1 2,8
9y ANDB B+ B & op 6,7 8,1 2,8
Ax XORA A< Ae op 6,7 8,1 2,8

total time given because of the logical context

Bx

By

REGISTER REFERENCE AND MACRO INSTRUCTIONS

17
1F
47
Cgb
Cib
C2b
C3b
ch
c5
cé
c7
c8
€9
CA
CB
CCb
CDb
Dg
D1
D2
D3
D4
D5
D6
D7

%k

*okk

CMPI

CMPK

SPZA
SPZB
NOP

ADDI
ADDK
SuBl
SUBK
CTOA
CTOB
MULT
DIV

MOVE
CALL
RF 1

TSTF
RSF

STF

CLRC
SETC
ATOI
ATOK
CLRA
CLRB
BTOI
BTOK

COMPARE | and op,

SKIP IF... **

COMPARE K and op,

SKIP IF...%*

SKIP ON ZERQ A**
SKIP ON ZERO B**

NO OPERATION

|
K
|
K
A
B

«

«

<«

<«

I + Im.op

K + Im.op

[
K -

«C

“

C

Im.op

Im.op

AB < A * B

AB < A/B (note |
MOVE (note A, 1, K)

JUMP TO INTERRUPT RTN
RETURN FROM INTERRUPT RTN
FLAGTEST, SKIP IF ON

F (op) <9
F (op) « 1
CARRY « @
CARRY < 1

|
K
A
B
|
K

«

A

A
9
g
B
B

Direct

Indirect

37

Immediate

11 13

11 13

2,7

2,7

1,3

2,8

2,8

2,8

2,8

1,3

1,3

40 (approx.)
40...80

2,2 + b,5/byte

60 (approx.)
4,5
3,1
3,1
1,3
1,3
1,3
1,3
1,3
1,3
1,3
1,3

mean time given in test instructions; the performance time

depends on number of skips caused by the result of the test

depending on the operands of the division

7,5

7,5

38

D8
D9
DA
DB
DC
DD
DEb
DFb
EP
El
E2
E3
El4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
FP
Fi
F2
F3
FC
FD
FE
FF

ITOK
1TOB
CLRI
CLRK
KTOA
KTOB
TSTA
TSTB
RLA

RLB

RL3A
RL3B
RRA

RRB

RR3A
RR3B
SRA

SRB

SR3A
SR3B
SWPA
SWPB
CMPA
COMA
COMB
NEGA
NEGB
10N

10F

HALT
WAIT

A+ |

B« |

A <
B <«
TEST A, SKIP IF
TEST B, SKIP IF
ROTATE A LEFT
ROTATE B LEFT
ROTATE A THRICE
ROTATE B THRICE
ROTATE A RIGHT
ROTATE B RIGHT
B
B

g
K< @
K
K

ROTATE B THRICE
ROTATE B THRICE
SHIFT A RIGHT
SHIFT B RIGHT

ON
ON

LEFT
LEFT

RIGHT
RIGHT

SHIFT A THRICE RIGHT
SHIFT B THRICE RIGHT

SWAP BYTES OF A
SWAP BYTES OF B
COMPARE A TO B,
ONE'S COMPL. OF
ONE'S COMPL. OF
TWO'S COMPL. OF
TWO'S COMPL. OF
INTERRUPT ON
INTERRUPT OFF
HALT, 10F

HALT, 10N

SKIP

@ > W

1,3
1,3
1,3
1,3
1,3
1,3
3,3
3,3
1,3
1,3
2,6
2,6
1,3
1,3
2,6
2,6
5,0
5,0
6,9
6,9
1,3
1,3
5,5

k%

ov NOKIA AB i _ =

© 00101 HELSINKI 100 - i e

Finland 2 Fd =
P.O. Box 780 n L :
Telephone 90 - 59 13% :
Telex 12-2062 eleno-sf
Telegrams ELECTRONOKIA =

-08.50.07/EO vers. B

